top of page

Deep learning

  • master280isfapp
  • 22 mars 2023
  • 1 min de lecture

Dernière mise à jour : 9 janv.

ECTS : 2


Enseignant responsable : GABRIEL TURINICI


Volume horaire : 18


Description du contenu du cours :

1/ Deep learning: major applications, key references, general background

 

2/ Types of approaches: supervised, reinforcement, unsupervised

 

3/ Neural networks: presentation of the main components—neurons, operations, loss function, optimization, architecture

 

4/ Focus on stochastic optimization algorithms, convergence proof of SGD

 

5/ Convolutional neural networks (CNNs): filters, layers, architectures

 

6/ Techniques: backpropagation, regularization, hyperparameters

 

7/ Networks for sequences: RNN, LSTM, Attention, Transformer

 

8/ Generative networks (GAN, VAE)

 

9/ Programming environments for neural networks: TensorFlow, Keras, PyTorch, and hands-on work with the examples covered in class

 

10/ Stable Diffusion, LLMs

 

11/ Ethical and alignment perspectives


Pré-requis obligatoire :

Python, Algèbre, Probabilités, Analyse numérique

 
 
bottom of page