Deep learning
- master280isfapp
- 22 mars 2023
- 1 min de lecture
Dernière mise à jour : 9 janv.
ECTS : 2
Enseignant responsable : GABRIEL TURINICI
Volume horaire : 18
Description du contenu du cours :
1/ Deep learning: major applications, key references, general background
2/ Types of approaches: supervised, reinforcement, unsupervised
3/ Neural networks: presentation of the main components—neurons, operations, loss function, optimization, architecture
4/ Focus on stochastic optimization algorithms, convergence proof of SGD
5/ Convolutional neural networks (CNNs): filters, layers, architectures
6/ Techniques: backpropagation, regularization, hyperparameters
7/ Networks for sequences: RNN, LSTM, Attention, Transformer
8/ Generative networks (GAN, VAE)
9/ Programming environments for neural networks: TensorFlow, Keras, PyTorch, and hands-on work with the examples covered in class
10/ Stable Diffusion, LLMs
11/ Ethical and alignment perspectives
Pré-requis obligatoire :
Python, Algèbre, Probabilités, Analyse numérique
